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Abstract

A new integral equation formulation of two-dimensional infinite isotropic medium (matrix) with various inclusions
and cracks is presented in this paper. The proposed integral formulation only contains the unknown displacements on
the inclusion–matrix interfaces and the discontinuous displacements over the cracks. In order to solve the inclusion–
crack problems, the displacement integral equation is used when the source points are acting on the inclusion–matrix
interfaces, whilst the stress integral equation is adopted when the source points are being on the crack surfaces. Thus,
the resulting system of equations can be formulated so that the displacements on the inclusion–matrix interfaces and the
discontinuous displacements over the cracks can be obtained. Based on one point formulation, the stress intensity fac-
tors at the crack tips can be achieved. Numerical results from the present method are in excellent agreement with those
from the conventional boundary element method.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Heterogeneous materials often contain various inclusions (voids can be taken as the special inclusions
with zero elastic modulus) and cracks. The interaction between the inclusions and the cracks can be ana-
lyzed using various numerical methods such as the finite element method (Zienkiewicz, 1989) and the
boundary element method (Aliabadi, 2002; Brebbia and Dominguez, 1992; Brebbia et al., 1984).
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Application of the finite element method in heterogeneous materials can be found in many references,
e.g. Thomson and Hancock (1984), Ghosh and Mukhopadhyay (1993) and Barsoum (1976). Considering
the geometric irregularity of the inclusions, the randomness of the inclusion distribution and various cracks,
it is not easy to carry out mesh division and to simulate the crack propagation. The interaction between a
circular inclusion and an arbitrarily oriented crack has been investigated using an integral equation method
(Erdogan et al., 1974). An integral equation method was also used to analyze the interaction between an
elastic circular inclusion and two symmetric collinear cracks (Hsu and Shivakumar, 1976). Crack propaga-
tion simulation of the crack–inclusion plate was investigated using the body force method (Saimoto and
Nisitani, 1998). However, these researches were only limited to the inclusions with simple geometry such
as circular and elliptical inclusions. Interaction between various coated inclusions and cracks has been
investigated using the boundary element method and the domain integral equation method (Dong et al.,
2003a). In the boundary element method, the interface condition, i.e. displacement continuity and traction
equilibrium, has been used to formulate the resulting system of equations. In the domain integral equation
method, only the isotropic matrix fundamental solution for anisotropic inclusions is used so that the com-
plex fundamental solution for anisotropic medium can be avoided. The price paid is that the inclusions
have to discretized into some finite elements. The domain integral equation method was also used to inves-
tigate the propagation of the crack near the inclusion (Dong et al., 2003b) and 3D inclusion–crack inter-
action (Dong et al., 2002).
In this paper, based on the methods proposed by Leite et al. (2003) for two-dimensional reinforced solid

and Dong and de Pater (2001) for hydraulic fracturing, a new integral equation formulation is presented to
solve two-dimensional inclusion–crack problems. Compared with the conventional boundary element
method for the inclusion–crack problems, the present integral equation formulation only contains the dis-
placements (no tractions) on the inclusion–matrix interfaces and the discontinuous displacements over the
cracks. Similar to the domain integral equation approach, the present integral equation approach can also
avoid the corner node problems (due to different normal directions at the corner nodes), thus irregular
inclusion shapes can easily be dealt with. In order to accurately calculate the stress intensity factors at
the crack tips, special crack tip elements (Dong and de Pater, 2001) are used to model the

ffiffi
r

p
variation

of the displacements near the crack tips. Numerical examples are presented to show the validity and the
effectiveness of the present method.
2. Basic formulation

For the cracked infinite isotropic matrix subjected to remote stresses, the displacement and the stress
integral equations at the point P being in the matrix can be given as follows (Dong et al., 2003a):
ukðP Þ ¼ u0kðP Þ þ
Z

C
UkiðP ; qÞtiðqÞdCðqÞ �

Z
C
T kiðP ; qÞuiðqÞdCðqÞ þ

Z
Cc

T kiðP ; qÞDiðqÞdC ð1Þ
and
rklðP Þ ¼ r0klðP Þ þ
Z

C
UkliðP ; qÞtiðqÞdCðqÞ �

Z
C
T kliðP ; qÞuiðqÞdCðqÞ þ

Z
Cc

T kliðP ; qÞDiðqÞdC ð2Þ
where q is the field point acting on the problem boundary. C and Cc denote the inclusion–matrix interface
and the crack surface, respectively. u0k and r0kl are, respectively, the displacements and the stresses at the
point P caused by remote stresses in an infinite homogeneous isotropic elastic matrix. Di(q) =
ui(q

�) � ui(q
+) in which q� and q+ are two points having the same coordinates of the lower and the upper

surfaces of the crack. Uki, Tki, Ukli and Tkli are the fundamental solutions of an infinite isotropic elastic
medium which are as follows (Brebbia and Dominguez, 1992):
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oxi

� �
ð3aÞ

T ki ¼ � 1
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oxk
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� �
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ð3bÞ

Ukli ¼
1

4pð1� mÞr ð1� 2mÞ½dkir;l þ dlir;k � dklr;i� þ 2r;ir;lr;kf g ð3cÞ

T kli ¼
G

2pð1� mÞr2 2
or
on

�
ð1� 2mÞdklr;i þ mðdkir;l þ dlir;kÞ � 4r;ir;lr;k½ �
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�
ð3dÞ
where dkl is the Kronecker delta. r;i ¼ orðP ;qÞ
oxiðqÞ in which r is the distance between the field point q and the

source point P. or
on ¼ r;ini in which ni is the directional cosine of the normal at the boundary point q with

respect to xi. G and m are shear modulus and Poisson�s ratio, respectively.
When the source point P approaches the boundary point p being on the inclusion–matrix interface,

Eq. (1) becomes
ckiuiðpÞ ¼ u0kðpÞ þ
Z

C
Ukiðp; qÞtiðqÞdCðqÞ �

Z c

C
T kiðp; qÞuiðqÞdCðqÞ þ

Z
Cc

T kiðp; qÞDiðqÞdC ð4Þ
where cki depends on the boundary geometry at the source point p. The symbol �c denotes the Cauchy prin-
cipal value integral.
When the source point P arrives at the point p over the crack surface, the stress integral equation

becomes
rklðpÞ ¼ r0klðpÞ þ
Z

C
Ukliðp; qÞtiðqÞdCðqÞ �

Z
C
T kliðp; qÞuiðqÞdCðqÞ þ

Z s

Cc

T kliðp; qÞDiðqÞdC ð5Þ
where �s represents the Hadamard finite-part integral.
For the Ith isotropic inclusion, the corresponding displacement boundary integral equation can be given

as (Brebbia and Dominguez, 1992)
cIkiðpÞuIi ðpÞ ¼
Z

CI

U I
kiðp; qÞtIi ðqÞdCðqÞ �

Z c

CI

T I
kiðp; qÞuIi ðqÞdCðqÞ ð6Þ
where CI represents the Ith inclusion–matrix interface.
From Eqs. (3a) to (3d), and assuming that there is the same Poisson�s ratio for the matrix and the inclu-

sions, one can find the following relationships (Leite et al., 2003):
UI
ki ¼

G

GI Uki ð7aÞ

T I
ki ¼ T ki ð7bÞ

UI
kli ¼ Ukli ð7cÞ

T I
kli ¼

GI

G
T kli ð7dÞ
Substituting (7a) and (7b) into Eq. (6), then adding Eqs. (4) and (6) and considering the interface condi-
tions, one can obtain the following displacement boundary integral equation:
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cki 1þ
GI

G

� �
uiðpÞ ¼ u0i ðpÞ �

Z c

CI

1� GI

G

� �
T kiðp; qÞuiðqÞdC þ

Z
Cc

T kiðp; qÞDiðqÞdC ð8Þ
For the matrix with multiple inclusions and cracks, Eq. (8) can be extended to the following form:
cki 1þ
GI

G

� �
uiðpÞ ¼ u0i ðpÞ �

Z c

CI

1� GI

G

� �
T kiðp; qÞuiðqÞdC

�
XNI

J¼1; 6¼I

Z
CJ

1� GJ

G

� �
T ijðp; qÞujðqÞdC þ

XNC

c¼1

Z
Cc

T kiðp; qÞDiðqÞdC ð9Þ
where NI and NC denote the numbers of the inclusions and the cracks, respectively. The source point p is
acting on the Ith inclusion–matrix interface.
Similarly, the stress integral equation for the point p being on the ICth crack surface can be written as
rklðpÞ ¼ r0klðpÞ �
XNI
I¼1

Z
CI

1� GI

G

� �
T kliðp; qÞuiðqÞdC þ

Z s

CIC

T kliðp; qÞDiðqÞdC

þ
XNC

JC¼1; 6¼IC

Z
CJC

T kliðp; qÞDiðqÞdC ð10Þ
From Eqs. (9) and (10), one can find that the displacement and the stress boundary integral equations only
contain the displacements on the inclusion–matrix interfaces and the discontinuous displacements over the
crack surfaces. Note that the tractions on the inclusion–matrix interfaces disappear in these two integral
equations. Therefore, contrary to the conventional boundary element method in which discontinuous ele-
ments are used near the corners of irregular inclusions (Dong et al., 2003c), arbitrary inclusion shapes can
be easily dealt with using Eqs. (9) and (10). If there are no any cracks in the matrix, Eqs. (9) and (10) will
reduce to the equations presented by Leite et al. (2003).
In numerical implementation, quadratic boundary elements are used to discretize the inclusion–matrix

interfaces, whilst a series of discontinuous quadratic boundary elements are employed to mesh the cracks.
Special crack tip elements (Dong and de Pater, 2001) are used to model the

ffiffi
r

p
variation of the displace-

ments near the crack tips. For the source point p being on the inclusion–matrix interface, Eq. (9) is used,
whilst for the source point p being on the crack surface, Eq. (10) is adopted. Through these processes, a
resulting system of equations can be obtained as follows:
A11 A12
A21 A22

� �
U

D

� �
¼

eUer
( )

ð11Þ
where Aij is the related coefficient matrix from Eqs. (9) and (10). U and D are the vectors of the displace-
ments on the inclusion–matrix interfaces and the discontinuous displacements over the crack surfaces,
respectively. eU is the vector of the displacements on the inclusion–matrix interfaces caused by remote stres-
ses, whilst er is the vector of the stresses caused by remote stresses and the pressure acting on the crack
surfaces.
Once the discontinuous displacements over the crack surfaces are available, the stress intensity factors

can be calculated by one point formulation, i.e. (Shou and Crouch, 1995)
KI ¼
G

4ð1� mÞ

ffiffiffiffiffiffi
2p
r

r
DnðrÞ ð12Þ
and
KII ¼
G

4ð1� mÞ

ffiffiffiffiffiffi
2p
r

r
DsðrÞ ð13Þ
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where r is the distance from the crack tip. Dn and Ds are the normal and the shear components of discon-
tinuous displacements over the cracks, respectively.
3. Numerical examples

3.1. An infinite isotropic elastic medium (matrix) containing one cylindrical elastic inclusion and one crack

One cylindrical elastic inclusion and one radially oriented crack are embedded into an infinite isotropic
elastic medium subjected to a remote unit stress r0 as shown in Fig. 1. This problem has been investigated
by some researchers, e.g. Lam et al. (1998) and Dong et al. (2003b). The aim of choosing this problem is to
check numerical accuracy of the present method. The Poisson�s ratios of both the inclusion and the matrix
are respectively taken as 0.25. The crack length 2a and the cylindrical inclusion radius R are assumed to be
1, respectively. The inclusion–matrix interface is discretized into 16 quadratic boundary elements, whilst the
crack surface is meshed into 20 quadratic discontinuous elements.
Fig. 2 shows the variation of the stress intensity factor at crack tip A for soft materials with the distance

d between the crack and the inclusion. For Gi/G = 0.0 and 0.5, the results from the present method are in
d 2a
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Fig. 1. Cylindrical inclusion–crack configuration.
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Fig. 2. Stress intensity factor at crack tip A for different inclusion materials (the number in the legend denotes the value of Gi/G < 1.0).
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excellent agreement with those given by Lam et al. (1998). For other soft inclusions, the corresponding
results from the present method are also shown in Fig. 2. One can find that the non-dimensional stress
intensity factor at crack tip A is always over 1 for soft inclusions. With the increase of the distance d be-
tween the crack and the inclusion, the stress intensity factor at crack tip A decreases. Compared with other
soft inclusions, void leads to the largest variation of the stress intensity factor at crack tip A. The stress
intensity factor for hard inclusion is shown in Fig. 3. Similar to the soft inclusion case, one can also observe
that the results from the present method are in excellent agreement with those by Lam et al. (1998). The
non-dimensional stress intensity factor at crack tip A for hard inclusion is always below 1. Relative to other
hard inclusions, rigid inclusion leads to the lowest value of the stress intensity factor at crack tip A.

3.2. One equilateral hexagonal inclusion and two cracks embedded in an infinite isotropic elastic medium

One equilateral hexagonal inclusion and two symmetrical cracks are embedded in an infinite isotropic
elastic medium subjected to a remote unit loading r0 as shown in Fig. 4. The Poisson�s ratios of both
the inclusion and the matrix are respectively taken as 0.25. Each edge length of the equilateral hexagonal
inclusion is equal to 1. The crack length 2a is taken as 1. The distance d is chosen to be 0.1.
Each edge of the equilateral hexagonal inclusion is meshed into six quadratic boundary elements, in

which two discontinuous boundary elements near two corners of each edge are used for the conventional
boundary element method (Dong et al., 2003c). The cracks AB and CD are respectively discretized into 20
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Fig. 3. Stress intensity factor at crack tip A for different inclusion materials (the number in the legend denotes the value of Gi/G > 1.0).
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Fig. 4. Equilateral hexagonal inclusion—two symmetrical cracks.
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Fig. 5. Stress intensity factor at crack tips A and B for different inclusion materials Gi/G.
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quadratic discontinuous elements. For different values of Gi/G, the stress intensity factors at the crack tips
A and B or D and C from the conventional boundary element method and the present method are shown in
Fig. 5. One can observe that two methods produce almost the same results. For Gi/G < 1.0 (Gi/G > 1.0), the
non-dimensional stress intensity factors at crack tips A and B are always bigger (smaller) than 1.

3.3. One cylindrical inclusion, one crack and one void embedded in an infinite isotropic elastic medium

One cylindrical inclusion, one crack and one void are embedded in an infinite isotropic elastic medium
subjected to a remote unit loading r0 as shown in Fig. 6. The Poisson�s ratios of both the inclusion and the
matrix are respectively taken as 0.25. The distances CA and BD are respectively assumed to be 0.1. The
radii, R, of the inclusion and the void are equal to 1, respectively. The centers of the inclusion and the void
are respectively situated at O1 (�1.6,0) and O2 (1.6,0). The crack length 2a is taken as 1.
This example has been solved using the domain integral equation method (Dong et al., 2003b). In the

present analysis, the conventional boundary element method and the present method are respectively used
to solve this example. The crack AB is discretized into 20 quadratic discontinuous elements. The inclusion–
matrix interface and the void boundary are respectively meshed into 16 quadratic boundary elements. For
different values of Gi/G, the stress intensity factors at the crack tips A and B from the conventional bound-
ary element method and the present method are shown in Fig. 7. It can be found that excellent agreement
between the results from two methods has been obtained. With the increase of Gi/G, the stress intensity
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Fig. 6. Inclusion–crack–void configuration.
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factors at crack tips A and B decreases. When Gi/G = 10
3, the non-dimensional stress intensity factors at

crack tips A and B are 0.684 and 1.896 (0.675 and 1.896 for the conventional boundary element method),
respectively.

3.4. One equilateral triangle inclusion, one crack and one equilateral triangle void embedded in an infinite

isotropic elastic medium

One equilateral triangle inclusion, one crack and one equilateral triangle void are embedded in an infinite
isotropic elastic medium subjected to a remote unit loading r0 as shown in Fig. 8. The Poisson�s ratios of
both the inclusion and the matrix are respectively taken as 0.25. The distances CA and BD are respectively
assumed to be 0.1. Each edge length of the equilateral triangle inclusion and the equilateral triangle void is
equal to 1. The crack length 2a is taken as 1.
Similar to the above examples, the conventional boundary element method (Dong et al., 2003c) and the

present method are used to study this example. The crack AB is discretized into 20 quadratic discontinuous
elements. Each edge of the equilateral triangle inclusion and the equilateral triangle void is meshed into six
quadratic boundary elements, in which two discontinuous boundary elements near two corners of each
edge are used for the conventional boundary element method. For different values of Gi/G, the stress inten-
sity factors at the crack tips A and B from the conventional boundary element method and the present
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Fig. 8. Equilateral triangle inclusion–crack–equilateral triangle void configuration.
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method are shown in Fig. 9. One can find that almost the same results from two methods have been
obtained. When Gi/G = 10

3, the non-dimensional stress intensity factors at crack tips A and B are 0.997
and 1.415 (0.998 and 1.417 for the conventional boundary element method), respectively.

3.5. One square inclusion, one crack and one square void embedded in an infinite isotropic elastic medium

One square inclusion, one crack and one square void are embedded in an infinite isotropic elastic med-
ium subjected to a remote unit loading r0 as shown in Fig. 10. The Poisson�s ratios of both the inclusion
and the matrix are respectively taken as 0.25. The distances CA and BD are respectively assumed to be 0.1.
Each edge length of the square inclusion and the square void is equal to 1. The centers of the square inclu-
sion and the square void are respectively situated at (�1.6,0) and (1.6,0). The crack length 2a is taken as 1.
Similar to the above examples, the crack AB is discretized into 20 quadratic discontinuous elements.

Each edge of the square inclusion and the square void is meshed into six quadratic boundary elements,
in which two discontinuous boundary elements near two corners of each edge are used for the conventional
boundary element method (Dong et al., 2003c). For different values of Gi/G, the stress intensity factors at
the crack tips A and B from the conventional boundary element method and the present method are shown
in Fig. 11. It can be found that two methods lead to almost the same results. When Gi/G = 10

3, the
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Fig. 10. Square inclusion–crack–square void configuration.
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non-dimensional stress intensity factors at crack tips A and B are 0.519 and 1.508 (0.520 and 1.508 for the
conventional boundary element method), respectively.
4. Conclusions

A new integral equation approach has been presented to solve various inclusion–crack problems. The
present integral equation formulation only contains the displacements on the inclusion–matrix interfaces
and the discontinuous displacements over the crack surfaces. In the conventional boundary element method
in which for the matrix and the inclusions, their respective integral equations must be formulated, then the
interface conditions (displacement continuity and traction equilibrium) have to be enforced. Specially, for
irregular inclusions, the discontinuous elements near corners are used to avoid the corner problem. How-
ever, the present integral equation does not contain the interface-matrix traction, therefore there is no the
corner problem. Various inclusion–crack problems are easily to be solved using the present method.
Numerical results are in excellent agreement with those from the conventional boundary element method.
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