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Abstract

A new integral equation formulation of two-dimensional infinite isotropic medium (matrix) with various inclusions
and cracks is presented in this paper. The proposed integral formulation only contains the unknown displacements on
the inclusion—matrix interfaces and the discontinuous displacements over the cracks. In order to solve the inclusion—
crack problems, the displacement integral equation is used when the source points are acting on the inclusion—-matrix
interfaces, whilst the stress integral equation is adopted when the source points are being on the crack surfaces. Thus,
the resulting system of equations can be formulated so that the displacements on the inclusion-matrix interfaces and the
discontinuous displacements over the cracks can be obtained. Based on one point formulation, the stress intensity fac-
tors at the crack tips can be achieved. Numerical results from the present method are in excellent agreement with those
from the conventional boundary element method.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Heterogeneous materials often contain various inclusions (voids can be taken as the special inclusions
with zero elastic modulus) and cracks. The interaction between the inclusions and the cracks can be ana-
lyzed using various numerical methods such as the finite element method (Zienkiewicz, 1989) and the
boundary element method (Aliabadi, 2002; Brebbia and Dominguez, 1992; Brebbia et al., 1984).
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Application of the finite element method in heterogeneous materials can be found in many references,
e.g. Thomson and Hancock (1984), Ghosh and Mukhopadhyay (1993) and Barsoum (1976). Considering
the geometric irregularity of the inclusions, the randomness of the inclusion distribution and various cracks,
it is not easy to carry out mesh division and to simulate the crack propagation. The interaction between a
circular inclusion and an arbitrarily oriented crack has been investigated using an integral equation method
(Erdogan et al., 1974). An integral equation method was also used to analyze the interaction between an
elastic circular inclusion and two symmetric collinear cracks (Hsu and Shivakumar, 1976). Crack propaga-
tion simulation of the crack—inclusion plate was investigated using the body force method (Saimoto and
Nisitani, 1998). However, these researches were only limited to the inclusions with simple geometry such
as circular and elliptical inclusions. Interaction between various coated inclusions and cracks has been
investigated using the boundary element method and the domain integral equation method (Dong et al.,
2003a). In the boundary element method, the interface condition, i.e. displacement continuity and traction
equilibrium, has been used to formulate the resulting system of equations. In the domain integral equation
method, only the isotropic matrix fundamental solution for anisotropic inclusions is used so that the com-
plex fundamental solution for anisotropic medium can be avoided. The price paid is that the inclusions
have to discretized into some finite elements. The domain integral equation method was also used to inves-
tigate the propagation of the crack near the inclusion (Dong et al., 2003b) and 3D inclusion—crack inter-
action (Dong et al., 2002).

In this paper, based on the methods proposed by Leite et al. (2003) for two-dimensional reinforced solid
and Dong and de Pater (2001) for hydraulic fracturing, a new integral equation formulation is presented to
solve two-dimensional inclusion—crack problems. Compared with the conventional boundary element
method for the inclusion—crack problems, the present integral equation formulation only contains the dis-
placements (no tractions) on the inclusion—matrix interfaces and the discontinuous displacements over the
cracks. Similar to the domain integral equation approach, the present integral equation approach can also
avoid the corner node problems (due to different normal directions at the corner nodes), thus irregular
inclusion shapes can easily be dealt with. In order to accurately calculate the stress intensity factors at
the crack tips, special crack tip elements (Dong and de Pater, 2001) are used to model the /r variation
of the displacements near the crack tips. Numerical examples are presented to show the validity and the
effectiveness of the present method.

2. Basic formulation

For the cracked infinite isotropic matrix subjected to remote stresses, the displacement and the stress
integral equations at the point P being in the matrix can be given as follows (Dong et al., 2003a):

u(P) = u(P) + / U(P.q)i(q)dT(q) — / To(P. q)u(q) AT (q) + / T4(P.q)Di(q)dT (1)

I'c

and

wu(P) =P + [ Un(P.ou(a)drta) = [ Tu(P.ow(@)dra)+ [ Tueobidr @)
where ¢ is the field point acting on the problem boundary. I and I'. denote the inclusion—matrix interface
and the crack surface, respectively. u) and o?; are, respectively, the displacements and the stresses at the
point P caused by remote stresses in an infinite homogeneous isotropic elastic matrix. D(q) =
uiq™) — u{q") in which ¢~ and ¢ are two points having the same coordinates of the lower and the upper
surfaces of the crack. Uy, Ty;, Uy, and Tyy; are the fundamental solutions of an infinite isotropic elastic
medium which are as follows (Brebbia and Dominguez, 1992):
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Uy = m {(3 —4v)In <;> O + aa—):{ aa—)ﬂ (3a)
Ty = —ﬁ {Sn {(1 — )8, + 25); a%r} (1-2v) (aa—;n - %nk)] (3b)
Uni = ém(lli—\))r {(1 = 2v)[0r s + Our e — Opars] + 217 74 } (3¢)
Ty = 271(17Civ)r2 {2%[(1 — 2V)0ur; + V(Or s + Oury) — 4rr

+ 2v(mr vy +myrry) + (1= 2v) 2 v g + ni oy + my05)— (1 — 4v)n,-5k1}(3d)
where 0y, is the Kronecker delta. r; agi in which r is the distance between the field point ¢ and the
source point P. & = r;n; in which n; is the directional cosine of the normal at the boundary point ¢ with
respect to x;. G and v are shear modulus and Poisson’s ratio, respectively.
When the source point P approaches the boundary point p being on the inclusion—-matrix interface,
Eq. (1) becomes

cutis(p) = u(p) + / Us(prq)ti(q) dT(g) / Tu(p)ulq)dI(q) + / Tu(p,q)Di(q)dl (4)

c

where ¢;; depends on the boundary geometry at the source point p. The symbol [° denotes the Cauchy prin-
cipal value integral.
When the source point P arrives at the point p over the crack surface, the stress integral equation

becomes
S

cu(p) = o (p) + / Usi(p,q)t:(q) 4T (q) — / T, q)us(g) AT (q) + / Top.)Di(q)dT (5)

I'c
where * represents the Hadamard finite-part integral.

For the Ith isotropic inclusion, the corresponding displacement boundary integral equation can be given
as (Brebbia and Dominguez, 1992)

(Pt (p) = / UL(p.q)!'(q) dT(q) - / TL(p. g (g) AT () (6)

where I'; represents the /th inclusion—-matrix interface.
From Egs. (3a) to (3d), and assuming that there is the same Poisson’s ratio for the matrix and the inclu-
sions, one can find the following relationships (Leite et al., 2003):

G
U{d GI Ukz (73)
TL =Ty (7b)
Ui = Ui (7c)
Gl
Tiw =5 T (7d)

Substituting (7a) and (7b) into Eq. (6), then adding Eqgs. (4) and (6) and considering the interface condi-
tions, one can obtain the following displacement boundary integral equation:
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o1+ L )utn) =)~ [ (1-S)tpamtarar + [ Tuipopiaar ®)

Iy Ie

For the matrix with multiple inclusions and cracks, Eq. (8) can be extended to the following form:

cki(1+%])ui<p>—u°<p>— [ (12 rutnamtoar

> 17&,/ ( ) Ty(p, )u;(q dF+Z /Tk, (p,q)Di(q)dI 9)

where NI and NC denote the numbers of the inclusions and the cracks, respectively. The source point p is
acting on the /th inclusion—matrix interface.
Similarly, the stress integral equation for the point p being on the ICth crack surface can be written as

N

ou(p) = ol(p i | (=€)t auar+ [ tutpaniar

I'c

NC
+ > [ ruapar (10)
Jc=1,#1C Y Tc

From Egs. (9) and (10), one can find that the displacement and the stress boundary integral equations only
contain the displacements on the inclusion—matrix interfaces and the discontinuous displacements over the
crack surfaces. Note that the tractions on the inclusion—-matrix interfaces disappear in these two integral
equations. Therefore, contrary to the conventional boundary element method in which discontinuous ele-
ments are used near the corners of irregular inclusions (Dong et al., 2003c), arbitrary inclusion shapes can
be easily dealt with using Egs. (9) and (10). If there are no any cracks in the matrix, Egs. (9) and (10) will
reduce to the equations presented by Leite et al. (2003).

In numerical implementation, quadratic boundary elements are used to discretize the inclusion—matrix
interfaces, whilst a series of discontinuous quadratic boundary elements are employed to mesh the cracks.
Special crack tip elements (Dong and de Pater, 2001) are used to model the /r variation of the displace-
ments near the crack tips. For the source point p being on the inclusion—-matrix interface, Eq. (9) is used,
whilst for the source point p being on the crack surface, Eq. (10) is adopted. Through these processes, a
resulting system of equations can be obtained as follows:

9 -{9)
Ay An| (D c

where A4;; is the related coefficient matrix from Eqgs. (9) and (10). U and D are the vectors of the displace-
ments on the inclusion-matrix interfaces and the discontinuous displacements over the crack surfaces,
respectively. U is the vector of the displacements on the inclusion—-matrix interfaces caused by remote stres-
ses, whilst & is the vector of the stresses caused by remote stresses and the pressure acting on the crack
surfaces.

Once the discontinuous displacements over the crack surfaces are available, the stress intensity factors
can be calculated by one point formulation, i.e. (Shou and Crouch, 1995)

G 27
K, :m TDn(”) (12)
and

G 2n
Kuzm\/—;DsO”) (13)
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where r is the distance from the crack tip. D, and Dy are the normal and the shear components of discon-
tinuous displacements over the cracks, respectively.

3. Numerical examples
3.1. An infinite isotropic elastic medium (matrix) containing one cylindrical elastic inclusion and one crack

One cylindrical elastic inclusion and one radially oriented crack are embedded into an infinite isotropic
elastic medium subjected to a remote unit stress ¢” as shown in Fig. 1. This problem has been investigated
by some researchers, e.g. Lam et al. (1998) and Dong et al. (2003b). The aim of choosing this problem is to
check numerical accuracy of the present method. The Poisson’s ratios of both the inclusion and the matrix
are respectively taken as 0.25. The crack length 2a and the cylindrical inclusion radius R are assumed to be
1, respectively. The inclusion—-matrix interface is discretized into 16 quadratic boundary elements, whilst the
crack surface is meshed into 20 quadratic discontinuous elements.

Fig. 2 shows the variation of the stress intensity factor at crack tip A for soft materials with the distance
d between the crack and the inclusion. For G;/G = 0.0 and 0.5, the results from the present method are in
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Fig. 2. Stress intensity factor at crack tip A for different inclusion materials (the number in the legend denotes the value of G;/G < 1.0).
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excellent agreement with those given by Lam et al. (1998). For other soft inclusions, the corresponding
results from the present method are also shown in Fig. 2. One can find that the non-dimensional stress
intensity factor at crack tip A is always over 1 for soft inclusions. With the increase of the distance d be-
tween the crack and the inclusion, the stress intensity factor at crack tip A decreases. Compared with other
soft inclusions, void leads to the largest variation of the stress intensity factor at crack tip A. The stress
intensity factor for hard inclusion is shown in Fig. 3. Similar to the soft inclusion case, one can also observe
that the results from the present method are in excellent agreement with those by Lam et al. (1998). The
non-dimensional stress intensity factor at crack tip A for hard inclusion is always below 1. Relative to other
hard inclusions, rigid inclusion leads to the lowest value of the stress intensity factor at crack tip A.

3.2. One equilateral hexagonal inclusion and two cracks embedded in an infinite isotropic elastic medium

One equilateral hexagonal inclusion and two symmetrical cracks are embedded in an infinite isotropic
elastic medium subjected to a remote unit loading ¢° as shown in Fig. 4. The Poisson’s ratios of both
the inclusion and the matrix are respectively taken as 0.25. Each edge length of the equilateral hexagonal
inclusion is equal to 1. The crack length 2a is taken as 1. The distance d is chosen to be 0.1.

Each edge of the equilateral hexagonal inclusion is meshed into six quadratic boundary elements, in
which two discontinuous boundary elements near two corners of each edge are used for the conventional
boundary element method (Dong et al., 2003c). The cracks AB and CD are respectively discretized into 20
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Fig. 3. Stress intensity factor at crack tip A for different inclusion materials (the number in the legend denotes the value of G;/G > 1.0).
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Fig. 4. Equilateral hexagonal inclusion—two symmetrical cracks.
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Fig. 5. Stress intensity factor at crack tips A and B for different inclusion materials G;/G.

quadratic discontinuous elements. For different values of G;/G, the stress intensity factors at the crack tips
A and B or D and C from the conventional boundary element method and the present method are shown in
Fig. 5. One can observe that two methods produce almost the same results. For G;/G < 1.0 (G/G > 1.0), the
non-dimensional stress intensity factors at crack tips A and B are always bigger (smaller) than 1.

3.3. One cylindrical inclusion, one crack and one void embedded in an infinite isotropic elastic medium

One cylindrical inclusion, one crack and one void are embedded in an infinite isotropic elastic medium
subjected to a remote unit loading ¢° as shown in Fig. 6. The Poisson’s ratios of both the inclusion and the
matrix are respectively taken as 0.25. The distances CA and BD are respectively assumed to be 0.1. The
radii, R, of the inclusion and the void are equal to 1, respectively. The centers of the inclusion and the void
are respectively situated at O; (—1.6,0) and O, (1.6,0). The crack length 2a is taken as 1.

This example has been solved using the domain integral equation method (Dong et al., 2003b). In the
present analysis, the conventional boundary element method and the present method are respectively used
to solve this example. The crack AB is discretized into 20 quadratic discontinuous elements. The inclusion—
matrix interface and the void boundary are respectively meshed into 16 quadratic boundary elements. For
different values of G;/G, the stress intensity factors at the crack tips A and B from the conventional bound-
ary element method and the present method are shown in Fig. 7. It can be found that excellent agreement
between the results from two methods has been obtained. With the increase of G;/G, the stress intensity

Fig. 6. Inclusion—crack—void configuration.
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Fig. 7. Stress intensity factor at crack tips A and B for different inclusion materials G;/G.

factors at crack tips A and B decreases. When Gy/G = 10°, the non-dimensional stress intensity factors at
crack tips A and B are 0.684 and 1.896 (0.675 and 1.896 for the conventional boundary element method),
respectively.

3.4. One equilateral triangle inclusion, one crack and one equilateral triangle void embedded in an infinite
isotropic elastic medium

One equilateral triangle inclusion, one crack and one equilateral triangle void are embedded in an infinite
isotropic elastic medium subjected to a remote unit loading ¢° as shown in Fig. 8. The Poisson’s ratios of
both the inclusion and the matrix are respectively taken as 0.25. The distances CA and BD are respectively
assumed to be 0.1. Each edge length of the equilateral triangle inclusion and the equilateral triangle void is
equal to 1. The crack length 2a is taken as 1.

Similar to the above examples, the conventional boundary element method (Dong et al., 2003c) and the
present method are used to study this example. The crack AB is discretized into 20 quadratic discontinuous
elements. Each edge of the equilateral triangle inclusion and the equilateral triangle void is meshed into six
quadratic boundary elements, in which two discontinuous boundary elements near two corners of each
edge are used for the conventional boundary element method. For different values of G,/G, the stress inten-
sity factors at the crack tips A and B from the conventional boundary element method and the present
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Fig. 8. Equilateral triangle inclusion—crack—equilateral triangle void configuration.
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Fig. 9. Stress intensity factor at crack tips A and B for different inclusion materials G;/G.

method are shown in Fig. 9. One can find that almost the same results from two methods have been
obtained. When G,/G = 10°, the non-dimensional stress intensity factors at crack tips A and B are 0.997
and 1.415 (0.998 and 1.417 for the conventional boundary element method), respectively.

3.5. One square inclusion, one crack and one square void embedded in an infinite isotropic elastic medium

One square inclusion, one crack and one square void are embedded in an infinite isotropic elastic med-
ium subjected to a remote unit loading ¢° as shown in Fig. 10. The Poisson’s ratios of both the inclusion
and the matrix are respectively taken as 0.25. The distances CA and BD are respectively assumed to be 0.1.
Each edge length of the square inclusion and the square void is equal to 1. The centers of the square inclu-
sion and the square void are respectively situated at (—1.6,0) and (1.6,0). The crack length 2« is taken as 1.

Similar to the above examples, the crack AB is discretized into 20 quadratic discontinuous elements.
Each edge of the square inclusion and the square void is meshed into six quadratic boundary elements,
in which two discontinuous boundary elements near two corners of each edge are used for the conventional
boundary element method (Dong et al., 2003¢). For different values of G;/G, the stress intensity factors at
the crack tips A and B from the conventional boundary element method and the present method are shown
in Fig. 11. It can be found that two methods lead to almost the same results. When G/G = 10°, the
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Fig. 10. Square inclusion—crack-square void configuration.
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Fig. 11. Stress intensity factor at crack tips A and B for different inclusion materials G;/G.

non-dimensional stress intensity factors at crack tips A and B are 0.519 and 1.508 (0.520 and 1.508 for the
conventional boundary element method), respectively.

4. Conclusions

A new integral equation approach has been presented to solve various inclusion—crack problems. The
present integral equation formulation only contains the displacements on the inclusion—matrix interfaces
and the discontinuous displacements over the crack surfaces. In the conventional boundary element method
in which for the matrix and the inclusions, their respective integral equations must be formulated, then the
interface conditions (displacement continuity and traction equilibrium) have to be enforced. Specially, for
irregular inclusions, the discontinuous elements near corners are used to avoid the corner problem. How-
ever, the present integral equation does not contain the interface-matrix traction, therefore there is no the
corner problem. Various inclusion—crack problems are easily to be solved using the present method.
Numerical results are in excellent agreement with those from the conventional boundary element method.
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